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What is your experience with Principal Component Analysis (PCA)

| never heard of PCA before this course

| have seen PCA mentioned before

| have read about PCA but never used it

| have used PCA a few times

PCA and | are practically best friends

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Principal Component Analysis (PCA) learning objectives

B Describe the concept of principal component analysis

B Explain why principal component analysis can be beneficial when there is high data
redundancy

Arrange a set of multivariate measurements into a matrix that is suitable for PCA
analysis

Compute the covariance of two sets of measurements
Compute the covariance matrix from a set of multivariate measurements
Compute the principal components of a data set using Eigenvector decomposition

Describe how much of the total variation in the data set that is explained by each
principal component
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Iris data

The Iris flower data

set or Fisher's Iris data set is a data
set introduced by Ronald Fisher in his
1936 paper The use of multiple
measurements in taxonomic problems
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Iris data

M 3 Iris types
- 50 flowers of each type

B For each flower
— Sepal length
— Sepal width
— Petal length
— Petal width
B We use one type as example
- 50 measured flowers
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Iris Data Matrix

B One column is one flower
B One row is all measurements of one type

‘Sepal length, --- Sepal length.,

X Sepal width; ---  Sepal width,,
| Petal length; --- Petal length,
_Petaﬁ. width; ... Petal widthso
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What can we use these data for?

B The measurements can be used to:
— Recognize a species of flowers
— Classify flowers into groups
— Describe the characteristics of the flower
— Quantify growth rates

B Do we need all the measurements?
— Can we boil down or combine some measurements?

B Are some measurements redundant?
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Variance
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‘Sepal Width Petal Length Petal Width
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High Redundancy
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Observation: We can explain quite a lot of the
sepal width if we know the sepal lengths
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Low Redundancy
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Observation: We can

explain the petal

length if we know the sepal lengths
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Covariance
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Covariance measures the relationship between
measurements
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High Covariance Sepal length and sepal width
a; = SL =1{5.1,49 ..., 5}

b; = SW = {3.5,3, ..., 3.3}

1
ChLew = - > a;b; = 17.2578

Note that in practice n-1 is used instead of n
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Low covariance
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Sepal length and petal width
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Vector notation for covariance
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Sepal length and sepal width
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Matrix notation for covariance

m x n matrix (m=4 and n=50)

[Sepal length,; --- Sepal length: |
X — Sepal width,; --- Sepal width,
| Petal length; --- Petal lengthg,
| Petal widthy ... Petal widthso
_ 1 T m x m square matrix
Cx = —XX" [0

Note that in practice n-1 is used instead of n
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Covariance matrix autopsy

|
CX — XXT
T

The diagonal elements are
the variances

o, = 0.1242 7

oiw = 0.1437 : HHI‘I
op; = 0.0302 R T | =R
0_123 - _ 00111 epa Sepal W Petal L Petal W
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Covariance matrix autopsy II

|
CX — XXT
T

The off-diagonal elements are
the covariance

1
OiLew = o > aib; =17.2578

|
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Symmetric!
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Covariance matrix autopsy III
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High redundancy
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Symmetric!
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Goals

B Minimize redundancy

- should be small
B Maximize signal

— Variance should be large

Signal to noise ratio:
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Sep'iIL ° SE'D’1|W PehIL ) Petal W O-I].Oise
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Changing basis
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B We start by
subtracting the
mean

— Centering data

B Red lines are the
default basis
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Changing basis
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Changing basis
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B A new basis that
follows the
covariance in the
data
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Changing basis
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OOOOO

B Lets try to rotate the
data - for
visualisation
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Changing basis
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OOOOO

B Finding the measurement
values in the new basis
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Changing basis
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B The dot product projects a
point down to a new axis

X17new — 217 P1
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Changing basis
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B The dot product projects a
point down to a new axis

PX =Y

M p,and p,are the rows of P

[Sepal length; ---
Sepal width,
Petal length,

| Petal widthy

Sepal lengthy, |
Sepal widths,
Petal lengthy,
Petal widthso |
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Changing basis
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B The dot product projects a
point down to a new axis

PX =Y

B Here Y contains the new
coordinates/measurements
per sample
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Goals

B Minimize redundancy
- should be small

B Maximize signal
— Variance should be large

OO

B Transform our data

— Rotating and scaling the
1 basis
s ] .

o4l = So it will have

4 5 6 2 3 - 1 1.5 2 0 02 04 06
Sepal L Sepal W Petal L Petal W

CY = YYT
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Goals
B The covariance matrix

1
n

B Should be as diagonal as

B We do this by

CY — YYT

. - Where P are the principal
- components

) 2 3 5 0 02 04 06
Sepal L Sepal W Petal L Petal W

Y =PX
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Computing the principal components

4IIIIIIIIIIIIill!!iiiiilllllllllil||||||||||| ]h
| Cx = — XXt

| n

B The i'th diagonal value of Cy is
VHT “ the variance along principal

= | component number i

4 5 6 2 3 4 1 1.5 2 0 02 04 06
Sepal L

B The Principal Components of
X are the eigenvectors of

Sepal W Petal L Petal W
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New covariance matrix for Iris data

B The principal
component are found
and

Y =PX

m \With the covariance
matrix

1
n

CY = YYT

Covariance: 0O
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Explained variance
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One component explains 75% of the total variation — so
for each flower we can have one number that explains
75% percent of the 4 measurements!
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What can we use it for?

B Classification

Based on one value instead of 4
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What can we use it for?

B Many more examples in the course

g generate faces by adjusting sliders [1]-[6]

AZ
I .

41 Sl 6l deino DTU

reset

help

36 DTU Compute, Technical University of Denmark Image Analysis 2026



DTU Compute -..

Final note — practical estimation of covariance matrix

|
CX — XXT
n

In practice n-1 is used instead of n for exercises
and in the exam.
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