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Principal Component Analysis (PCA) learning objectives
 Describe the concept of principal component analysis
 Explain why principal component analysis can be beneficial when there is high data 

redundancy
 Arrange a set of multivariate measurements into a matrix that is suitable for PCA 

analysis
 Compute the covariance of two sets of measurements
 Compute the covariance matrix from a set of multivariate measurements
 Compute the principal components of a data set using Eigenvector decomposition
 Describe how much of the total variation in the data set that is explained by each 

principal component
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Iris data

The Iris flower data 
set or Fisher's Iris data set is a data 
set introduced by Ronald Fisher in his 
1936 paper The use of multiple 
measurements in taxonomic problems
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Iris data
 3 Iris types

– 50 flowers of each type
 For each flower

– Sepal length
– Sepal width
– Petal length
– Petal width

We use one type as example
– 50 measured flowers
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Iris Data Matrix
 One column is one flower
 One row is all measurements of one type

1 50
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What can we use these data for?
 The measurements can be used to:

– Recognize a species of flowers
– Classify flowers into groups
– Describe the characteristics of the flower
– Quantify growth rates
– …

 Do we need all the measurements?
– Can we boil down or combine some measurements?

 Are some measurements redundant?
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Variance
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High Redundancy
Observation: We can explain quite a lot of the 
sepal width if we know the sepal lengths
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Low Redundancy
Observation: We can NOT explain the petal 
length if we know the sepal lengths
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Covariance

Covariance measures the relationship between 
measurements
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High Covariance

𝑎𝑎𝑖𝑖 = SL = {5.1, 4.9 … , 5}

bi = SW = {3.5, 3, … , 3.3}

Sepal length and sepal width

Note that in practice n-1 is used instead of n
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Low covariance

Sepal length and petal width
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Vector notation for covariance

a = SL = [5.1, 4.9 … , 5]

𝐛𝐛 = SW = [3.5, 3, … , 3.3]

Sepal length and sepal width
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Matrix notation for covariance

m x n matrix (m=4 and n=50)

m x m square matrix 
(m=4)

Note that in practice n-1 is used instead of n
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Covariance matrix autopsy

The diagonal elements are 
the variances
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Covariance matrix autopsy II

The off-diagonal elements are 
the covariance

Symmetric!
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Covariance matrix autopsy III

Symmetric!

High redundancy
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Goals

 Minimize redundancy
– Covariance should be small

 Maximize signal
– Variance should be large

Signal to noise ratio:
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Changing basis
We start by 

subtracting the 
mean
– Centering data

 Red lines are the 
default basis
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Changing basis
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Changing basis
 A new basis that 

follows the 
covariance in the 
data
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Changing basis

Signal

N
oi

se

 Lets try to rotate the 
data – for 
visualisation
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Changing basis
 Finding the measurement 

values in the new basis
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Changing basis
 The dot product projects a 

point down to a new axis

p1

x17
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Changing basis
 The dot product projects a 

point down to a new axis

 p1and p2are the rows of Pp1

x17
p2
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Changing basis
 The dot product projects a 

point down to a new axis

Here Y contains the new 
coordinates/measurements 
per sample

p1

x17
p2
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Goals
 Minimize redundancy

– Covariance should be small
 Maximize signal

– Variance should be large

 Transform our data
– Rotating and scaling the 

basis

 So it will have
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Goals
 The covariance matrix

 Should be as diagonal as 
possible

 We do this by

– Where P are the principal 
components
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Computing the principal components

 The Principal Components of 
𝐗𝐗 are the eigenvectors of

 The i’th diagonal value of 𝐂𝐂𝒀𝒀 is 
the variance along principal 
component number i
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New covariance matrix for Iris data
 The principal 

component are found 
and

With the covariance 
matrix

Covariance: 0
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Explained variance

One component explains 75% of the total variation – so 
for each flower we can have one number that explains 
75% percent of the 4 measurements!
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What can we use it for?
 Classification

?
Based on one value instead of 4
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What can we use it for?
Many more examples in the course
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Final note – practical estimation of covariance matrix

In practice n-1 is used instead of n for exercises 
and in the exam.
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